Problem Set III: You should complete this assignment by March 17.

- 1.) Consider a fluid in hydrostatic equilibrium with a vertical entropy gradient $\partial S/\partial z < 0$. Take $g = -g\hat{z}$.
- a.) Starting from the basic equations, derive the growth rate of ideal Rayleigh-Bernard instability. You will find it helpful to relate the density perturbation $\tilde{\rho}/\rho_0$ to the temperature perturbation \tilde{T}/T_0 by exploiting the fact that the instability develops slowly in comparison to the sound transit time across a cell. Relate your result to the Schwarzschild criterion discussed in class.
- b.) Now, include thermal diffusivity (χ) and viscosity (ν) in your analysis. Calculate the critical temperature gradient for instability, assuming $\chi \sim \nu$. Discuss how this compares to the ideal limit. What happens if $\nu > \chi$?
- 2.) Now again, consider the system of Problem 2, now immersed in a uniform magnetic field $\underline{B} = B_0 \hat{z}$.
- a.) Assuming ideal dynamics, use the Energy Principle to analyze the stability of a convection cell of vertical wavelength k_z . Of course, $k_z L_p >> 1$, where L_p is a mean pressure scale length. What is the effect of the magnetic field? Can you estimate how the growth rate changes?
- b.) Now, calculate the growth rate using the full MHD equations. You may assume $\underline{\nabla} \cdot \underline{\nabla} = 0$. What structure convection cell is optimal for vertical transport of heat when B_0 is strong? Explain why. What happens when $B_0 \rightarrow \infty$? Congratulations you have just derived a variant of the Taylor-Proudman theorem!

Physics 218B

Plasma Physics

3.) Consider a rotating fluid with mean $\underline{V} = r\Omega(r)\hat{\theta}$. Your task here is to analyze the stability of this system to interchanges of 'rings', i.e.

In all cases, assume $\nabla \cdot \underline{V} = 0$ and $k_{\theta} = 0$, so the interchange motions carry no angular momentum themselves and the cells sit in the *r*-*z* plane.

- a.) At the level of a "back-of-an-envelope" calculation, calculate the change in energy resulting from the incompressible interchange of rings (1) and (2). Note that $E = L^2/2mr^2$ and that the angular momentum L of an interchanged ring is conserved, since $k_{\theta} = 0$. From this, what can you conclude about the profile of $\Omega(r)$ necessary for stability? Congratulations you have just derived the Rayleigh criterion!
- b.) Now, calculate the interchange growth rate by a direct solution of the fluid equations. You may find it helpful to note that for rotating fluids in cylindrical geometry:

$$\frac{\partial V_r}{\partial t} + \underline{V} \cdot \underline{\nabla} V_r - \frac{V_{\theta}^2}{r} = \frac{-1}{\rho} \frac{\partial P}{\partial r},$$
$$\frac{\partial V_{\theta}}{\partial t} + \underline{V} \cdot \underline{\nabla} V_{\theta} + \frac{V_r V_{\theta}}{r} = \frac{-1}{\rho r} \frac{\partial P}{\partial \theta},$$
$$\frac{\partial V_z}{\partial t} + \underline{V} \cdot \underline{\nabla} V_z = \frac{-1}{\rho} \frac{\partial P}{\partial z}.$$

Show that you recover the result of part (a).

c.) Compare and contrast this interchange instability to an incompressible Rayleigh-Taylor instability. Make a table showing the detailed correspondences.

4.) *Taylor in Flatland*

Taylor awakes one morning, and finds himself in Flatland, a 2D world. Seeking to relax, he sets about reformulating his theory for that planar universe.

- a.) Write down the visco-resistive 2D MHD equations, and show that *three* quadratic quantities are conserved, as $\eta \rightarrow 0$, $v \rightarrow 0$.
- b.) Which of these is the most likely to constrain magnetic relaxation? Argue that
 - i.) the local version of this quantity is conserved for an 'flux circle', as $\eta \rightarrow 0$,
 - ii.) the global version is the most "rugged", for finite η .
- c.) Formulate a 2D Taylor Hypothesis i.e. that magnetic energy is minimized while the quantity you identified from b.) ii.) is conserved. What equation describes this state? Show that the solution is force-free. What quantity is constant in Flatland? Hence, what is the endstate of Taylor relaxation in 2D?
- d.) Consider the possibility that $v >> \eta$ in Flatland. Derive the mean field evolution equation for mean magnetic potential. Discuss!
- e.) *Optional Extra Credit -* Describe the visit of the Terrifying Torus to Flatland. How would 2D Taylor perceive this apparition?
 N.B. You may find it useful to consult *Flatland*, by E. Abbott.

5.) Drift-Alfven Waves

a.) Derive three coupled reduced fluid equations for ϕ , A_{\parallel} , n. You may assume $T_e \gg T_i$ and electrons are isothermal. Include a strong $\underline{B}_0 = B_0 \hat{z}$ and $\langle n \rangle = \langle n(r) \rangle$.

- b.) Show that in the limit where A_{\parallel} is negligible, you recover the Hasegawa-Wakatani system. Calculate the dispersion relation for drift instability in this system. Discuss your result in the limit $k_{\parallel}^2 v_{Th}^2 / \omega v >> 1$.
- c.) Calculate the quasi-linear particle flux related to b.), above.
- d.) Show that if \hat{n} and $d\langle n \rangle / dr$ are negligible, you recover reduced MHD. What waves are present in this system? Discuss and derive the dispersion relation.
- e.) Derive the dispersion relation for the full 3 equation system. Discuss how drift and shear-Alfven waves couple for $k_{\parallel}^2 v_{Th}^2 / \omega v > 1$.